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Abstract— We address the problem of effectively composing
skills to solve sparse-reward tasks in the real world. Given a
set of parameterized skills (such as exerting a force or doing a
top grasp at a location), our goal is to learn policies that invoke
these skills to efficiently solve such tasks. Our insight is that
for many tasks, the learning process can be decomposed into
learning a state-independent task schema (a sequence of skills
to execute) and a policy to choose the parameterizations of the
skills in a state-dependent manner. For such tasks, we show that
explicitly modeling the schema’s state-independence can yield
significant improvements in sample efficiency for model-free
reinforcement learning algorithms. Furthermore, these schemas
can be transferred to solve related tasks, by simply re-learning
the parameterizations with which the skills are invoked. We
find that doing so enables learning to solve sparse-reward
tasks on real-world robotic systems very efficiently. We validate
our approach experimentally over a suite of robotic bimanual
manipulation tasks, both in simulation and on real hardware.
See videos at http://tinyurl.com/chitnis-schema.

I. INTRODUCTION

Let us consider the task of opening a bottle. How should
a two-armed robot accomplish this? Even without knowing
the bottle geometry, its position, or its orientation, one can
answer that the task will involve holding the bottle’s base
with one hand, grasping the bottle’s cap with the other hand,
and twisting the cap off. This “schema,” the high-level plan
of what steps need to be executed, only depends on the task
and not on the object’s geometric and spatial state, which
only influence how to parameterize each of these steps (e.g.,
deciding where to grasp, or how much to twist).

Reinforcement learning methods provide a promising ap-
proach for learning such behaviors from raw sensory in-
put [1], [2], [3]. However, typical end-to-end reinforcement
learning methods do not leverage the schematics of tasks, and
instead aim to solve tasks by learning a policy, which would
involve inferring both the schema and the parameterizations,
as a function of the raw sensory input. These approaches have
led to impressive successes across domains such as game-
playing [1], [4], [5], [6] and robotic control tasks [2], [7],
[8], [9], but are known to have very high sample complexity.
For instance, they require millions of frames of interaction
to learn to play Atari games, or several weeks’ worth of
experience to learn simulated control policies, which makes
them impractical to train on real hardware.

In this work, we address the problem of learning to per-
form tasks in environments with a sparse reward signal, given
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Fig. 1: We learn policies for solving real-world sparse-reward
bimanual manipulation tasks from raw RGB image observations.
We decompose the problem into learning a state-independent task
schema (a sequence of skills to execute) and a state-dependent
policy that appropriately instantiates the skills in the context of the
environment. This decomposition speeds up learning and enables
transferring schemas from simulation to the real world, leading to
successful task execution within a few hours of real-world training.
The AR tags are only used for automating the reward computation;
our model is not given any object pose information. Top left: Lifting
an aluminum tray. Top right: Rotating a T-wrench. Bottom left:
Opening a glass jar. Bottom right: Picking up a large soccer ball.

a discrete set of generic skills parameterized by continuous
arguments. Examples of skills include exerting a force at a
location or moving an end effector to a target pose. Thus,
the action space is hybrid discrete-continuous [10]: at each
timestep, the agent must decide both 1) which skill to use
and 2) what continuous arguments to use (e.g., the location
to apply force, the amount of force, or the target pose to
move to). The sample inefficiency of current reinforcement
learning methods is exacerbated in domains with these large
search spaces; even basic tasks such as opening a bottle with
two arms are challenging to learn from sparse rewards. While
one could hand-engineer dense rewards, this is undesirable
as it does not scale to more complicated tasks. We ask a fun-
damental question: can we use the given skills to efficiently
learn policies for tasks with a large policy search space, like
bimanual manipulation, given only sparse rewards?

Our insight is that for many tasks, the learning process
can be decomposed into learning a state-independent task
schema (sequence of skills) and a state-dependent policy that
chooses appropriate parameterizations for the different skills.
Such a decomposition of the policy into state-dependent



and state-independent parts simplifies the credit assignment
problem and leads to more effective sharing of experience, as
data from different instantiations of the task can be used to
improve the same shared skills. This leads to faster learning.

This modularization can further allow us to transfer
learned schemas among related tasks, even if they have
different state spaces. For example, suppose we have learned
a good schema for picking up a long bar in simulation,
where we have access to object poses, geometry information,
etc. We can then reuse that schema for a related task
such as picking up a tray in the real world from only
raw camera observations, even though both the state space
and the optimal parameterizations (e.g., grasp poses) differ
significantly. As the schema is fixed, policy learning for
this tray pickup task will be very efficient, since it only
requires learning the (observation-dependent) arguments for
each skill. Transferring the schema in this way enables
learning to solve sparse-reward tasks very efficiently, making
it feasible to train real robots to perform complex skills. See
Figure 2 for an overview of our approach.

We validate our approach over a suite of robotic bimanual
manipulation tasks, both in simulation and on real hardware.
We give the robots a very generic library of skills such
as twisting, lifting, and reaching. Even given these skills,
bimanual manipulation is challenging due to the large search
space for policy optimization. We consider four task families:
lateral lifting, picking, opening, and rotating, all with varying
objects, geometries, and initial poses. All tasks have a sparse
binary reward signal: 1 if the task is completed, and O
otherwise. We empirically show that a) explicitly modeling
schema state-independence yields large improvements in
learning efficiency over the typical strategy of conditioning
the policy on the full state, and b) transferring learned
schemas to real-world tasks allows complex manipulation
skills to be discovered within only a few hours (<10) of
training on a single setup. Figure 1 shows some examples of
real-world tasks solved by our system.

II. RELATED WORK

Search in parameterized action spaces. An agent equipped
with a set of skills parameterized by continuous arguments
must learn a policy that decides both which skills to use
and what continuous arguments to use for them. Param-
eterized action MDPs (PAMDPs) [10] were constructed for
this exact problem setting. Recent work has addressed deep
reinforcement learning for PAMDPs [11], [12], by learning
policies that output both the discrete skill and continuous
parameter selections at each timestep. In contrast, we propose
a model that bakes in state-independence of the discrete skill
selection, and show that this assumption not only improves
learning efficiency, but also is experimentally useful. A
separate line of work learns control policies for steps in a
policy sketch [13], which can be recombined in novel ways
to solve new task instances; however, this work does not
consider the discrete search aspect of the problem, as we do.

Transfer learning for robotics. The idea of transferring a
learned policy from simulation to the real world for more
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Fig. 2: In bimanual manipulation tasks, a schema is a sequence
of skills for each arm to execute. We train in simulation both a
state-independent model for predicting this schema and a state-
dependent neural network ¢ for predicting its continuous param-
eters, via reinforcement learning. Our experiments show that using
a state-independent schema predictor for these tasks makes training
significantly more efficient. To solve real-world tasks, we transfer
schemas learned in simulation, and only optimize ¢.

efficient robotic learning was first developed in the early
1990s [14], [15]. More recent techniques include learning
from model ensembles [16] and utilizing domain random-
ization [17], [18], [19], in which physical properties of a
simulated environment are randomized to allow learned poli-
cies to be robust. However, as these methods directly transfer
the policy learned in simulation, they rely on the simulation
being visually and physically similar to the real world. In
contrast, we only transfer one part of our learned policy —
the skill sequence to be executed — from simulation to the
real world, and allow the associated continuous parameters
to be learned in the real-world domain.

Temporal abstraction for reinforcement learning. The
idea of using temporally extended actions to reduce the
sample complexity of reinforcement learning algorithms has
been studied for decades [20], [21], [22], [23]. For instance,
work on macro-actions for MDPs [23] attempts to build a
hierarchical model in which the primitive actions occupy the
lowest level, and subsequently higher levels build local poli-
cies, each equipped with their own termination conditions,
that make use of actions at the level below. More recent work
seeks to learn these hierarchies [24], [25], but successes have
largely been limited to simulated domains due to the large
amount of data required. In our work, we propose a model
that makes skill selection independent of state, enabling real-
world robotic tasks to be solved via transfer.

III. APPROACH

Given a set of parameterized skills, we aim to solve sparse-
reward tasks by learning a policy that decides both which
skill to execute and what arguments to use when invoking
it. Our insight is that, for many tasks, the same sequence
of skills (possibly with different arguments) can be used
to optimally solve different instantiations of the task. We
operationalize this by disentangling the policy into a state-
independent task schema (sequence of skills) and a state-
dependent prediction of how to parameterize these skills. We



first formally define our problem setup, and then present our
model for leveraging the state-independence of schemas to
learn efficiently. Finally, we describe how our approach also
allows transferring schemas across tasks, letting us learn real-
world policies from raw images by reusing schemas learned
for related tasks in simulation.

Problem Setup. Each task we consider is defined as a
parameterized action Markov decision process (PAMDP) [10],
[26] with finite horizon T'. The reward for each task is
a binary function indicating whether the current state is
an element of the set of desired goal configurations, such
as a state with the bottle opened. The learning objective,
therefore, is to obtain a policy 7 that maximizes the expected
proportion of times that following it achieves the goal. Note
that this is a particularly challenging setup for reinforcement
learning algorithms due to the sparsity of the reward function.

The agent is given a discrete library of generic skills X,
where each skill z € X is parameterized by a corresponding
vector v® of continuous values. Examples of skills can
include exerting a force at a location, moving an end effector
to a target pose, or rotating an end effector about an axis.
Let A denote the action space of the PAMDP. An action
a € Ais a tuple (z,v"), indicating what skill to apply as
well as the corresponding parameterization. A schema T is a
sequence of T skills in X, where = = x1, 29, ..., x captures
the sequence of skills but not their continuous parameters.

Assumption. We assume that the optimal schema z* is
state-independent: it depends only on the task, not on the
state and its dynamics. This implies that the same schema
is optimal for all instantiations of a task, e.g. different
geometries and poses of objects. We note that this is a valid
assumption across many tasks of interest, since the skills
themselves can be appropriately chosen to be complicated
and expressive, such as stochastic, closed-loop control poli-
cies for guiding an end effector.

Modular Policies. The agent must learn a policy 7 that,
at each timestep, infers both which skill x € A" to use (a
discrete choice) and what continuous arguments v to use.

What is a good form for such a policy? A simple strategy,
which we use as a baseline and depict in Figure 3 (top),
would be to represent 7 via a neural network, with weights ¢,
that takes the state as input and has a two-headed output. One
head predicts logits that represent a categorical distribution
over the skills X, while the other head predicts a mean and
variance of a Gaussian distribution over continuous argument
values for all skills. To sample an action, we can sample
x € X from the logits predicted by the first head, then sample
arguments using the subset of means and variances predicted
by the second head that correspond to v*.

However, this does not model the fact that the optimal
schema is state-independent. To capture this, we need to
remove the dependence of the discrete skill selection on the
input state. Thus, we propose to maintain a separate 7' X | X|
array, where row ¢ is the logits of a categorical distribution
over which skill to use at time ¢. Note that 7" is the horizon
of the MDP. In this architecture, the neural network is only

T BASELINE
logits over X
Network o } sample -skill x|
with weights -
. action
¢ #, 0 for all v* select& _ | arguments
sample v*

w OURS

logits over X, time 0
o) logits over X, time 1 sample at
. current time
logits over X, time T "'4."
q action
Network iz _,~
ith weight w0 forallv select & | arguments |
—
wi v(v:lg s sample v*

Fig. 3: Top: A baseline policy architecture for solving tasks with
a discrete set of skills X', each parameterized by a vector v* of
continuous values. The policy for a task is a neural network with
weights ¢ that predicts 1) logits over which skill to use and 2) mean
and variance of a Gaussian over continuous argument values for all
skills. To sample an action, we first sample a skill based on the log-
its, then select the corresponding subset of continuous arguments,
and finally sample argument values from those Gaussians. Bottom:
Our proposed policy architecture, which leverages the assumption
that the optimal schema is state-independent. The key difference is
that the neural network only predicts a distribution over continuous
argument values, and we train a state-independent 7" x |X| array
of logits over which skill to use at each timestep. In the text, we
discuss how to update these logits.

tasked with predicting the skill arguments. The 7' x | X| array
of logits and the neural network, taken together, represent the
policy 7, as depicted in Figure 3 (bottom).

Learning Schemas and Skill Arguments. The weights ¢
of the neural network can be updated via standard policy
gradient methods. Let 7 denote a trajectory induced by
following 7 in an episode. The objective we wish to maxi-
mize is J(¢) = E,[r(7)]. Policy gradient methods such as
REINFORCE [27] leverage the likelihood ratio trick, which
says that V4 J(¢) = E;[r(1)V4logn(T)], to tune ¢ via
gradient ascent. When estimating this gradient, we treat the
current setting of the array of logits as a constant.
Updating the logits within the 7" x |X| array can also
be achieved via policy gradients; however, since there is
no input, and because we have sparse rewards, the pol-
icy optimization procedure is quite simple. Let ¢, be
the logit for time ¢ and skill z. Given trajectory 7 =
(80,0, °%, 81,1, U1, oy ST)
e If 7 achieves the goal, i.e. (1) > 0, increase ¢y, for
each timestep ¢ and skill x taken at that timestep.
e If 7 does not achieve the goal, i.e. (1) = 0, decrease @y,
for each timestep ¢ and skill = taken at that timestep.
The amount by which to increase or decrease ¢y, is
absorbed by the step size and thus gets tuned as a hyper-
parameter. See Algorithm 1 for full pseudocode.

Schema Transfer Across Tasks. Since we have disentangled
the learning of the schema from the learning of the skill ar-
guments within our policy architecture, we can now transfer
the T' x |X| array of logits across related tasks, as long as
the skill spaces and horizons are equal. Therefore, learning
for a new task can be made efficient by reusing a previously



Task Family Object (Sim) Objects (Real)

Schema Discovered from Learning in Simulation

lateral lifting bar

aluminum tray, rolling pin, heavy bar, plastic box 1) L: top grasp, R: top grasp 2) L: lift, R: lift

picking ball soccer ball 1) L: top grasp, R: go-to pose 2) L: no-op, R: go-to pose 3) L: lift, R: lift
opening bottle glass jar, water bottle 1) L: top grasp, R: side grasp 2) L: twist, R: no-op
rotating corkscrew T-wrench, corkscrew 1) L: go-to pose, R: side grasp 2) L: go-to pose, R: no-op 3) L: rotate, R: no-op

TABLE I: Task families, object considered in simulation, objects considered in real world, and schemas (for left and right arms) discovered
by our algorithm in simulation. Schemas learned in simulation for a task family are transferred to multiple objects in the real world.

Algorithm TRAIN-POLICY(M, a, )

1 Input: M, an MDP as defined in Section III.
2 Input: o and S, step sizes.
3 Initialize neural network weights ¢.
4 Zero-initialize T' x |X| array of logits oy,
5 while not done do
6 D « batch of trajectories T = (s¢, x4+, v;*)
obtained from running policy 7 in M.
7 V¢J (@) < POLICYGRADIENT(7, D)
8 ¢ — o+ aVuJ(o) // Oor Adam [28].
9 for each trajectory T € D do
10 for each skill x; used in T do
11 if 7 achieves the goal then
12 | e ¢ o+
else
13 ‘ Pt — Ptx — 6

Algorithm 1: Training policies 7 that explicitly model the
state-independence of schemas via a T' x | X| array of logits
over what skill to use at each timestep.

learned schema, since we would only need to train the neural
network weights ¢ to infer skill arguments for that new task.

Importantly, transferring the schema is reasonable even
when the tasks have different state spaces. For instance,
one task can be a set of simulated bimanual bottle-opening
problems in a low-dimensional state space, while the other
involves learning to open bottles in the real world from high-
dimensional camera observations. As the state spaces can be
different, it follows immediately that the tasks can also have
different optimal arguments for the skills.

IV. EXPERIMENTS

We test our proposed approach on four robotic bimanual
manipulation task families: lateral lifting, picking, opening,
and rotating. Table I lists the different objects that we
considered for each one. These task families were chosen be-
cause they represent a challenging hybrid discrete-continuous
search space for policy optimization, while meeting our
requirement that the optimal schema is independent of the
state. We show results on these tasks both in simulation and
on real Sawyer arms: schemas are learned in simulation by
training with low-dimensional state inputs, then transferred
as-is to visual inputs (in simulation as well as in the real
world), for which we only need to learn skill arguments. Our
experiments show that our proposed approach is significantly
more sample-efficient than one that uses the baseline policy

architecture, and allows us to learn bimanual policies on real
robots in less than 10 hours of training. We first describe the
experimental setup, then discuss our results.

A. MuJoCo Experimental Setup

Environment. For all four task families, two Sawyer robot
arms with parallel-jaw grippers are placed at opposing ends
of a table, facing each other. A single object is placed on the
table, and the goal is to manipulate the object’s pose in a task-
specific way. Lateral lifting (bar): The goal is to lift a heavy
and long bar by 25cm while maintaining its orientation. We
vary the bar’s location and density. Picking (ball): The goal
is to lift a slippery (low coefficient of friction) ball vertically
by 25cm. The ball slips out of the gripper when grasped
by a single arm. We vary the ball’s location and coefficient
of friction. Opening (bottle): The goal is to open a bottle
implemented as two links (a base and a cap) connected by
a hinge joint. If the cap is twisted without the base being
held in place, the entire bottle twists. The cap must undergo
a quarter-rotation while the base maintains its pose. We vary
the bottle’s location and size. Rotating (corkscrew): The goal
is to rotate a corkscrew implemented as two links (a base
and a handle) connected by a hinge joint, like the bottle. The
handle must undergo a half-rotation while the base maintains
its pose. We vary the corkscrew’s location and size.

Skills. The skills we use are detailed in Table II, and
the search spaces for the skill parameters are detailed in
Table III. Note that because we have two arms, we actually
need to search over a cross product of this space with itself.

State and Policy Representation. Experiments conducted
in the MuJoCo simulator [29] use a low-dimensional state:
proprioceptive features (joint positions, joint velocities, end
effector pose) for each arm, the current timestep, geome-
try information for the object, and the object pose in the
world frame and each end effector’s frame. The policy is
represented as a 4-layer MLP with 64 neurons in each layer,
ReLU activations, and a multi-headed output for the actor
and the critic. Since object geometry and pose can only be
computed within the simulator, our real-world experiments
will instead use raw RGB camera images.

Training Details. We use the Stable Baselines [30] im-
plementation of proximal policy optimization (PPO) [31],
though our method is agnostic to the choice of policy
gradient algorithm. We use the following hyper-parameters:
Adam [28] with learning rate 0.001, clipping parameter 0.2,
entropy loss coefficient 0.01, value function loss coefficient



Skill Allowed Task Families Continuous Parameters

top grasp lateral lifting, picking, opening (X, y) position, z-orientation

side grasp opening, rotating (x, y) position, approach angle
go-to pose picking, rotating (X, y) position, orientation
lift lateral lifting, picking distance to lift
twist opening none
rotate rotating rotation axis, rotation radius
no-op all none

TABLE II: Skills, allowed task families, and skill parameters.

Parameter Relevant Skills Search Space (Sim) Search Space (Real)

[-0.1, 0.1] x/y/z offset

. location on table surface
from object center

(X, y) position grasps, go-to pose

z-orientation top grasp [0,27] [0, 27]
approach angle side grasp -5 5 —5: 5]
. . [0, 27] r/p/y Euler angles [0, 27| t/p/y Euler angles
orientation go-to pose converted to quat converted to quat
distance to lift lift [0,0.5] [0,0.5]

[-0.1, 0.1] x/y offset
from object center

[0,0.2]

rotation axis rotate location on table surface

rotation radius rotate [0,0.2]

TABLE III: Parameter search spaces for simulation and real world.
In simulation, unlike the real world, we have access to object poses,
so we can constrain some search spaces for efficiency. Positions,
distances, and lengths are in meters. Rotation axis is always vertical.

0.5, gradient clip threshold 0.5, number of steps 10, number
of minibatches per update 4, and number of optimization
epochs 4. Our implementation builds on the Surreal Robotics
Suite [32]. Training is parallelized across 50 workers. The
time horizon 7' = 3 in all tasks.

B. Real-World Sawyer Experimental Setup

Environment. Our real-world setup also contains two
Sawyer robot arms with parallel-jaw grippers placed at
opposing ends of a table, facing each other. We task the
robots with manipulating nine common household objects
that require two parallel-jaw grippers to interact with. We
consider the same four task families (lateral lifting, picking,
opening and rotating), but work with more diverse objects
(such as a rolling pin, soccer ball, glass jar, and T-wrench), as
detailed in Table I. For each task family, we use the schema
discovered for that family in simulation, and only learn the
continuous parameterizations of the skills in the real world.
See Figure 1 for pictures of some of our tasks.

Skills. The skills and parameters are the same as in simu-
lation (Table II), but the search spaces are less constrained
(Table III) since we do not have access to object poses.

State and Policy Representation. The state for these real-
world tasks is the 256 x 256 RGB image obtained from an
overhead camera that faces directly down at the table. To
predict the continuous arguments, we use a fully convolu-
tional spatial neural network architecture [33], as shown in
Figure 4 along with example response maps.

Training Details. We use PPO and mostly the same hyper-
parameters, with the following differences: learning rate

3@256x256

output: 8x8 spatial map with
* 2dimensions response

* 4dimensions offset

*  2p non-spatial parameters

pretrain with VGG16

Fig. 4: To predict continuous arguments given an image input, we
leverage the fact that all tasks require learning two spatial arguments
for each arm: an (X, y) location along the table surface. To learn
efficiently, we use a fully convolutional architecture [33]. We begin
by passing the image through the first four layers of an ImageNet-
pretrained VGG16 [34]; each layer is 2 convolutions followed by
a max-pool. This gives us 512 8 x 8 maps. The second-last layer
convolves with 16 2 x 2 filters with stride 2, giving 16 8 x 8
maps. Finally, the last layer convolves with (2 + 4 + 2p) filters
with stride 1, where p is the number of non-spatial parameters
for the task. The first two dimensions give each arm’s probability
distribution (response map) over an 8 X 8 discretization of the table
surface locations, the next four dimensions give offsets on these
locations, and the final 2p dimensions give values for each arm’s
remaining arguments (orientations, distances, etc.). Upper right:
Example response maps learned by this model for each arm, for
the rolling pin and soccer ball tasks. The AR tags are only used in
our experiments for automating the reward computation to measure
success; our model is not given any object pose information.
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Fig. 5: Learning curves for simulated tasks, with training paral-
lelized across 50 workers. Each curve depicts an average across
5 random seeds. By using a policy architecture that leverages the
state-independence of the optimal schema (orange), we are able to
achieve significant gains in sample complexity across all four tasks,
over the baseline architecture that predicts skills and arguments
conditioned on the state (blue). If an oracle tells us the perfect
schema, and we only need to learn the arguments for those skills,
then of course, learning will be extremely sample-efficient (green).
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Fig. 6: Learning curves for training from images in simulation,
with training parallelized across 50 workers. Each curve depicts
an average across 5 random seeds. When learning visual policies,
transferring schemas trained on low-dimensional states is crucial.

0.005, number of steps 500, number of minibatches per
update 10, number of optimization epochs 10, and no paral-
lelization. We control the Sawyers using PyRobot [35].

C. Results in Simulation

Figure 5 shows that our policy architecture greatly im-
proves the sample efficiency of model-free reinforcement
learning. In all simulated environments, our method learns
the optimal schema, as shown in the last column of Table I.
Much of the difficulty in these tasks stems from sequenc-
ing the skills correctly, and so our method, which more
effectively shares experience across task instantiations in its
attempt to learn the task schema, performs very well.

Before transferring the learned schemas to the real-world
tasks, we consider learning from rendered images in simu-
lation, using the architecture from Figure 4 to process them.
Figure 6 shows the impact of transferring the schema versus
re-learning it in this more realistic simulation setting. We see
that when learning visual policies, transferring the schemas
learned in the tasks with low-dimensional state spaces is criti-
cal to efficient training. These results increase our confidence
that transferring the schema will enable efficient real-world
training with raw RGB images, as we show next.

D. Results in Real World

Figure 7 shows our results on the nine real-world tasks,
with schemas transferred from the simulated tasks. We can
see that, despite the challenging nature of the problem
(learning from raw camera images, given sparse rewards),
our system is able to learn to manipulate most objects in
around 4-10 hours of training. We believe that our approach
can be useful for sample-efficient learning in problems other
than manipulation as well; all one needs is to define skills ap-
propriate for the environment such that the optimal sequence

Real-World Task Learning Curves
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Fig. 7: Learning curves for the real-world tasks. We stop training
when the policy reaches 90% average success rate over the last 100
episodes. It takes around 6-8 hours to execute 2000 skills, so most
policies are learned in around 4-10 hours. By transferring schemas
learned in simulation, we can train robots to solve sparse-reward
bimanual manipulation tasks from raw camera images.

depends only on the task, not the (dynamic) state. The skills
may themselves be parameterized closed-loop policies.

Please see the supplementary video for examples of
learned behavior on the real-world tasks.

V. FUTURE WORK

In this work, we have studied how to leverage state-
independent sequences of skills to greatly improve the sam-
ple efficiency of model-free reinforcement learning. Fur-
thermore, we have shown experimentally that transferring
sequences of skills learned in simulation to real-world tasks
enables us to solve sparse-reward problems from images very
efficiently, making it feasible to train real robots to perform
complex skills such as bimanual manipulation.

An important avenue for future work is to relax the as-
sumption that the optimal schema is open-loop. For instance,
one could imagine predicting the schema via a recurrent
mechanism, so that the decision on what skill to use at time
t 4+ 1 is conditioned on the skill used at time ¢. Another
interesting future direction is to study alternative approaches
to training the state-independent schema predictor. Finally,
we hope to investigate the idea of inferring the schemas from
human demonstrations of a task, such as those in videos.
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